LQD – Magnetic domains in amorphous TbFe₂ and PrFe₂

Pinar Akcora, Brian Kirby, Max Kresch, Adele Tamboli, Eric Toberer

Instrument Scientist: Rex Hjelm

Outline...

- What is LQD?
- TbFe₂ PbFe₂ Thin Films Amorphous Ferromagnets
- Nuclear and magnetic scattering
- Data Reduction and Analysis

LQD

Small angle neutron scattering!

- Wavelength range: 1.5 -15 Å
- Scattering angle: 6-60 mrad
- Q range: 0.003 to 0.5 Å⁻¹
- Detector: 2D position sensitive grid

Good for: phase separation, morphology, and critical phenomena in hard and soft matter

Scattering Intensity Model

$$I(Q) = \frac{A}{\left(Q^2 + \prod_A^2\right)^2} + \frac{B}{\left(Q^2 + \prod_B^2\right)^2}$$

- Lorentzian term:
 - dynamic fluctuations in the spins: magnons
- Lorentzian squared:
 - static regions of spin ordering
- _A and _B are the inverses of the corresponding correlation lengths
- Low Q approximation

Data Reduction / Analysis

- Rebin into Q and I
- Subtract nuclear scattering (above Tc) from nuclear + magnetic
- "Linearize" equation
- Fit parabola to low Q data
- Extract spin correlation length

Tb Sample Preparation

Prepared by sputtering (e-beam onto single crystal silicon)

- 1.5 microns thick
- 7 stacked samples
- Preferred axis up
- Cooled with applied B along easy axis colinear with beam

LQD Experiment 1: TbFe₂

- Amorphous material
- Films grown on crystal Si
- Tc = 450 K
- Below Tc (nuclear+magnetic):
 - 300 K
 - 400 K
- Above Tc (nuclear):
 - 460 K

TbFe₂ Raw Data – 2D intensity

Averaged over all angles

Time averaged intensity

Graph from TbFe₂

Note the trends in residuals, indicating a systematic error.

- •Imperfections in model
- •360° binning of Q averages anisotropy

TbFe₂ Results

Correlation length

130°C: $280 \pm 3 \text{ Å}$

 30°C : $285 \pm 9 \text{ Å}$

From F. Hellman et al., correlation lengths of 300-500 Å were found, depending on binned angle chosen.

Experiment 2: PrFe₂

- Amorphous material
- Films grown on crystal Cu
- Below Tc (200 K): nuclear+magnetic
- Above Tc (340K): nuclear

PrFe₂ Raw Data – 2D intensity

- T = 340 K
- Above Tc
- Isotropic

- T = 200 K
- Below Tc
- Anisotropic

Data Analysis of PrFe₂

$$I(Q) = \frac{A}{\left(Q^2 + \square^2\right)^2}$$

Parallel to anisotropy direction

Perpendicular to anisotropy direction

Spin Correlation Length (perpendicular): 158 Å
Spin Correlation Length (parallel): 172 Å
Indicative of static spin localization!